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ABSTRACT

A series of mine design accidents in the late 1980s resulted in a major research program at the University
of New South Wales, Australia, aimed at developing pillar and mine design guidelines.  A database of both
failed and unfailed Australian underground coal mine pillar case studies was compiled.  A procedure was
developed to enable the effective width of rectangular pillars to be taken into account.  The database was
analyzed statistically using the maximum likelihood method, both independently and as a combined data set
with the more extensive South African database.  Probabilities of failure were correlated to factors of safety.
It was found that there was less than a 4% variance in pillar design extraction ratios resulting from each of
these approaches.  There is a remarkable consistency between the design formulas developed from back-
analysis of the two separate national pillar databases containing many different coal seams and geological
environments.
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Fs1 ' K1 r % (1& r) w
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, (1)

INTRODUCTION

In the 3-year period to 1992, 60 continuous miners were
trapped by falls of strata for more than 7 hr in collieries in New
South Wales, Australia.  In the preceding 2 years, eight coal
miners were killed in pillar extraction operations in New South
Wales.  In the New South Wales and Queensland coalfields,
at least 15 extensive collapses of bord-and-pillar workings oc-
curred unexpectedly in the 15-year period to 1992.  Six of these
collapses occurred in working panels; fortuitously, five oc-
curred during shutdown periods and the sixth occurred while
the continuous miner was being flitted to the surface for repairs.

One contributor to these events was the lack of a compre-
hensive pillar design procedure.  Legislation in New South

Wales at the time simply required coal pillars to have a
minimum width of one-tenth depth or 10 m, whichever was
greater.  The influence of pillar height on strength received no
recognition.

This set of circumstances led to funding by the New South
Wales Joint Coal Board of a major research project on pillar de-
sign and behavior.  The research was undertaken by the School of
Mining Engineering at the University of New South Wales
(UNSW).  The primary objectives of the research were to improve
the understanding of coal pillars and associated floor and roof
strata behavior under various loading conditions and to incorporate
these outcomes into the mine design knowledge base.

RESEARCH METHODOLOGY

The approach adopted to pillar design was based on that
developed for square pillars by Salamon and Munro [1966,
1967].  However, the extensive use of rectangular and diamond-
shaped pillars in Australia required more detailed consideration
of the effective width of parallelepiped pillars and the effect of
this width on pillar strength.

Firstly, an adequate Australian database of failed and
unfailed pillar case histories was established.  A relationship
was then developed to factor in the influence of rectangular and
diamond-shaped pillars, which comprised just over 50% of the
database.  This database was then subjected to rigorous statisti-
cal analysis using a range of techniques in order to quantify

parameters associated with each of two generally accepted
empirical formulas for describing pillar strength.  This facilitated
the establishment of correlation, for all strength expressions,
between the probability that a formula would yield a successful
design versus the respective design factor of safety.

The Australian database was also combined with the much
larger and long-established South African database, and the
analysis was repeated to determine if the two population bases
could be considered as one.  A close correlation was obtained,
leading to an increased level of confidence in this methodology
and to a number of more universal conclusions concerning pillar
design.

EMPIRICAL COAL PILLAR STRENGTH ESTIMATIONS

The development of computer and numerical technologies
in recent decades has facilitated, at least in principle, the analy-
sis of stresses in pillars and their foundations, i.e., the roof and
floor strata.  Unfortunately, physical experimentation has not
advanced equally rapidly.  Hence, the understanding of the
intrinsic constitutive laws controlling the behavior of yielding
rocks is still unsatisfactory.  More immediate problems include
the significant discrepancies between the physical properties ex-
hibited by rocks in situ and those measured in the laboratory by
testing small specimens.  These problems relate to the effects of
size and shape on rock strength.

Many investigators have proposed simple empirical formu-
las to describe the strength of coal pillars.  The most common
feature of most of these empirical relationships is that they de-
fine strength ostensively only in terms of the linear dimensions
of the pillars and a multiplying constant, representing the

strength of the unit volume of coal.  Investigators over the years
have proposed formulas that belong to one of two types.  One
type defines pillar strength simply as a linear function of the
width-to-height (w/h) ratio:

where K1 is the compressive strength of a cube and r is a dimen-
sionless constant.  The quantities of w and h are the width and
height of the pillar, respectively.

If the notation

 R ' w/h (2)
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is introduced, then equation 1 becomes

Fs1 ' K1[r % (1 & r)R]. (3)

According to this formula, geometrically similar pillars have the
same strength regardless of their actual dimensions.

A second commonly used pillar strength formula takes the
form

which is expressed in a dimensionally correct form.  " and $ are
dimensionless parameters; w and h are the linear dimensions of
the pillar.  Multiplier K2 is the strength of a reference body of
coal of height h0 and a square cross section with side length w0.

In most instances, the reference body is taken to be cube of
unit volume for convenience's sake, in which case h0 and w0 are
both unity and can be omitted from the formula.  Expressions
belonging to this family are referred to as power law strength
formulas.  In contrast to formulas of the form of equation 1,
these formulas are also volume-sensitive.

EFFECTIVE WIDTH OF PARALLELEPIPED PILLARS

The development of statistically based pillar design formu-
las rests minimally upon the premise that a fairly large and
tolerably reliable database of unfailed and failed pillar panels
can be compiled.  Salamon et al. [1996] have identified a num-
ber of strict criteria that must be satisfied before a case can be
included in the database.  One of these that must be appreciated
when applying the outcomes of this pillar design research is that
these outcomes apply only to competent roof and floor en-
vironments, i.e., the database relates only to failures of the coal
pillar element of the pillar system, not to the roof or floor
elements.

Against this background, an Australian database of
19 failed and 16 unfailed cases was assembled.  Rectangular
pillars comprised eight of the failed and nine of the unfailed
cases.  Diamond-shaped pillars comprised one failed case.  In
order to preserve in these circumstances the availability of the
strength formulas derived for square pillars, many researchers
have proposed the introduction of an effective width.

One of the most basic approaches is to define the effective
width, we, as

where w1 ' minimum pillar width (measured along  
roadway)

and w2 ' maximum pillar width (measured along  
roadway).

In situations where w2 is not extremely different to w1, this ap-
proach has merit.  However, when w2 » w1, the equation pro-
duces an unrealistic effective pillar width (table 1).

Table 1.CCApplication of various effective
pillar width formulas

(Width and height in meters)

w1 w2 h /w1w2 4Ap/Cp w1

100 100 3 100.0 100 100
80 100 3 89.4 88.9 88.9
50 100 3 70.7 66.7 66.7
30 100 3 54.7 46.2 46.2
20 100 3 44.7 33.3 33.3
15 100 3 38.7 26.1 21.7
10 100 3 31.6 18.2 10.7
1 100 3 10.0 2.0 1

The most promising recommendation has come from Wagner
[1974, 1980], who, making use of the concept of hydraulic
radius, suggested that the effective width be defined as

where Ap and Cp are the cross-sectional area and the cir-
cumference of the pillar, respectively.

Application of equation 6 produces effective pillar width
similar to that of equation 5 when w1 is greater than about 0.5w2

(table 1).  At moderate to low values of w1  (0.4w2 # w1 #
0.2w2), equation 6 predicts a smaller effective width, which is
more sensible from a mechanistic viewpoint.  However, at very
low values of w1 (w1 < 0.2w2), the equation is still considered to
overestimate the effective pillar width.  This is because when a
pillar is narrow, failure is likely to occur across the narrow di-
mension before sufficient confinement is generated in the
longitudinal direction to be of benefit.



66

1o '
2w2

w1 % w2

. (9)

we ' w1

R&Rl

Ru&Rl

o ' w1 .
(10)

V ' w 2 h R '
w1 sin 2

h
'

w
h

(14)

Figure 1.CCDefinition of mining variables associated with a
parallelepiped pillar.

Figure 2.CCComparison of the various proposals for calculating
the effective width of a 100-m-long, 3-m-high rectangular pillar.

This leads to the concept that rectangular and irregular
pillars need to be of a critical minimum width before benefit is
gained from confinement generated in the longitudinal direc-
tion.  This benefit can be expected to ramp up to a plateau level
as the minimum width increases.  Furthermore, it is reasonable
to expect that this minimum critical width will be a function of
mining height, increasing with increasing mining height.

The need to nominate a minimum critical pillar width has
been incorporated into the analysis by modifying equation 6 on
the basis that almost all pillars can be regarded as paral-
lelepipeds, i.e., their bases are parallelograms (figure 1).  Pillars
therefore have side lengths w1 and w2 (w1 # w2) and an internal
angle 2 # 90°.  Equation 6 then becomes

we o ' 1ow, (7)

where w is the minimum width of the pillar, i.e.,

w ' w1 sin 2 (8)

and the dimensionless factor 1o is defined by

The range of this factor is 1 # 1o < 2, which is encountered as
the aspect ratio moves from unity toward infinity.  Experience
indicates that much before the complete failure of a pillar, its
edges are already yielding.  Thus, if the w/h ratio in one di-
rection of a rectangular pillar is low, one of the principal
stresses confining its core will remain small, and this stress,
together with the maximum stress, will control failure.

Hence, the extra confinement that may arise from the
aspect ratio will have little or no effect.  It is suggested that
such apprehension may be catered for by postulating that the
effective width is the minimum width, i.e., we ' w as long as
R < Rl, and it becomes we ' weo when R > Ru.

In the intermediate range, i.e., when Rl # R # Ru, the ef-
fective width changes smoothly in accordance with

Here, the choice of the limiting w/h ratios is open to judgment.
It appears reasonable, however, to use the following values:

       Rl ' 3                 Ru ' 6  (11)

Table 1 and figure 2 show the effects of the various ap-
proaches when applied to calculating the effective width of a
100-m-long, 3-m-high rectangular pillar.

Using the concept of effective width, the power law in
equation 4 can be rewritten for pillars with a general paral-
lelepiped shape:

Fs2 ' K2w
 "h $ 1 " (12)

An alternative form of this formula expresses the strength as the
function of the pillar volume V and the w/h ratio R:

Fs2 ' K2V
 aR b 1 ", (13)

where the volume refers to a dummy square pillar of width w
and height h, and the w/h ratio is calculated from the minimum
pillar width:
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g

&1 %1 , (16)
qm ' (H*

(w%b1 ) (w2% b2 / sin 2)

ww2
(18)

Fs2 ' 7.4 w 0.46

h 0.66
(MPa) (19a)

Fs2 '
19.24

w 0.133 h 0.067
0.237 w

5h

2.5

&1 %1 (MPa) (19b)

The new constants a and b can be defined in terms of constants
" and $:

Experience has shown that the original power law formula
(equation 4) tends to underestimate the strength of squat pillars,
i.e., pillars with a w/h ratio in excess of about 5.  To cater for
this problem, Salamon and Wagner [1985] suggested an
extension of equation 4 into the range of higher w/h ratios.
This extension, after adaptation to pillars of parallelepiped
shape, is

which is valid if R > Ro and where 1 is defined in equation 10.
This particular form was chosen to ensure that there is a smooth
transition between this and equation 13 at R ' Ro [Salamon and
Wagner 1985].  Here, Ro and g are appropriately chosen con-
stants.  The expression is often referred to as the squat pillar
strength formula.  Since its inception, it has been applied

widely in the Republic of South Africa using the following pair
of constants:

Ro ' 5            g ' 2.5 (17)

In critical situations, the judgment exercised in deriving the
effective pillar width relationship may be regarded as too spec-
ulative.  This concern can be addressed by either choosing an
elevated design factor of safety to account for this level of un-
certainty or reverting to the use of the minimum pillar width in
pillar strength calculations.

Another aspect to the use of rectangular pillars is the cal-
culation of pillar load.  In calculating the tributary load, the true
dimensions need to be employed.  Thus, the pillar load assumes
the following form:

In this relationship, * is a modifier.  It is unity in all cases where
the pillar burden is the conventional tributary load.  If, however,
due to secondary extraction the pillar load is believed to differ
from this value, the load can be adjusted by applying this factor.
Moreover, to remain consistent with earlier calculations, ( is
taken to be:  ( ' 1.1 psi/ft ' 24.8827 kN/m3 ' 24.8827 kPa/m.

 UNSW INITIAL DESIGN FORMULAS

In 1992, following a number of serious incidents related to
the lack of restriction on pillar height, the Chief Inspector of
Coal Mines in New South Wales required operators to obtain
approval to mine at heights exceeding 4 m.  To address the need
for a pillar design methodology, the UNSW research team
undertook in 1995 a preliminary analysis of its database
[Hocking et al. 1995].  At the time, the database comprised
14 collapsed cases and 16 stable cases that satisfied the
selection criteria.  The database was analyzed statistically using
the full maximum likelihood method.  Galvin and Hebblewhite
[1995] subsequently published the following pillar design
formulas, which find current application in Australia:

and its squat pillar version (R > 5):

A conservative approach was adopted, and the minimum
pillar width was proposed as the effective width.  It follows,
therefore, that 1 ' 1 in these expressions.  There was little
difference in the pillar strength obtained by allowing all
parameters to float in the statistical analysis as opposed to allow-
ing only the K values to float and fixing the other parameters to
be the same as those used for many years in the Republic of
South Africa.  To avoid confusion and to facilitate the intro-
duction of the formulas, therefore, only those formulas derived
by allowing the K values to float were presented to operators.
The formula for strength based on the linear relationship took
the following form:

Fs1 ' 5.36(0.64 % 0.36R)    (MPa) (20)
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Fs2 ' 8.60 (w1)0.51

h 0.84
(MPa) (21a)

Fs2 '
27.6310.51

w 0.220 h 0.110
0.290 w

5h

2.5

&1 %1 (MPa) (21b)

Fs2 ' 6.88 (w1)0.42

h 0.60
(MPa) (22a)

Fs2 '
16.3610.42

w 0.116 h 0.058
0.215 w

5h

2.5

&1 %1 (MPa) (22b)

Figure 3.CCPillar strength and pillar load relationship for
both the failed (o) and unfailed (+) Australian cases.

UNSW REFINED (RECTANGULAR) FORMULAS

In 1996, a more comprehensive statistical analysis of the
expanded Australian database was completed that incorporated
the effective width of rectangular pillars as defined earlier
[Salamon et al. 1996].  Statistical methods included least
squares, limited maximum likelihood, and full maximum likeli-
hood.  Both power law models and linear law models were
evaluated, and all parameters were allowed to float.  In all in-
stances, the power law model gave better correlations.

The following strength formulas were found to best
describe the observed behavior of pillars in New South Wales
and Queensland:

The corresponding expression for squat pillars is given by

In these expressions, w ' w1 sin 2, and the effective width
factor 1 is as defined in equation 10.

The relationship between pillar strength and pillar load
produced by these equations for each point in the database is
shown in figure 3.  Design factors of safety associated with the
probability of achieving a stable design are shown in table 2.

Table 2.CCProbability of failure
versus factor of safety

Probability of
failure

Factor of
safety 

8 in 10 . . . . . . . . . . . 0.87
5 in 10 . . . . . . . . . . . 1.00
1 in 10 . . . . . . . . . . . 1.22
5 in 100 . . . . . . . . . . 1.30
2 in 100 . . . . . . . . . . 1.38
1 in 100 . . . . . . . . . . 1.44
1 in 1,000 . . . . . . . . 1.63
1 in 10,000 . . . . . . . 1.79
1 in 100,000 . . . . . . 1.95
1 in 1,000,000 . . . . . 2.11

REANALYSIS OF THE SOUTH AFRICAN DATABASE

The original extensive South African coal pillar database
used by Salamon and Munro in 1966 has since been updated
and supplemented by Madden and Hardman [1992].  This
combined South African database comprises 44 failed and
98 unfailed cases.  It has also been reanalyzed using the same
statistical techniques used for the Australian database.  Two
failed cases were later omitted from the data set [Salamon et al.
1996].

This analysis has produced the following strength
formulas:

The corresponding expression for squat pillars (R > 5) is given
by

The linear version of the strength estimator is simply

Fs1 ' 5.60(0.69 % 0.31R)    (MPa) (23)
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Fs2 ' 6.88 w1

h 0.7
(MPa) (24a)

Fs2 '
19.05 1

w 0.133 h 0.066
0.253 w

5h

2.5

&1 %1 (MPa) (24b)

Figure 4.CCComparison between South African power formulas, 1966/82 and 1996.  A, h '' 2 m; B, h '' 4 m.

Figure 5.CCThe failed (o) and unfailed (+) cases in a pillar
strength versus pillar load plot using the combined Australian-
South African database.

Figure 4 shows the comparison between the pillar strength
produced by equations 22a and 22b and that predicted by the
original Salamon and Munro formula and its modified squat
pillar form.  In the case of a mining height of 2 m, the figure
shows that for a given pillar strength, pillars designed with the

updated formulas may need to be about 2 m wider.  For a bord
width of 6 m at a w/h ratio of 10, this results in about 3% less
resource recovery.  For similar circumstances in a 4-m mining
height, the increase in pillar size is on the order of 3.2 m.

COMBINED AUSTRALIAN AND SOUTH AFRICAN DATABASES

A further step in the research program was to combine the
South African and Australian databases and to analyze them as
a combined population, then compare and contrast them with
the two independent data populations for each country.  This
combined database comprised 177 cases of pillar systems,
including 61 collapsed cases.  This produced the following
formulas:

For R > 5, the squat version of this expression takes the
following form:

The corresponding linear formula is simply

Fs1 ' 5.41(0.63 % 0.37R)    (MPa) (25)

Figure 5 shows failed and unfailed cases in the load plane.
The figure illustrates a fairly good discrimination between the
two sets of points.  Only one unfailed point occurs on the wrong
side of the s ' 1 line, and the median failed cases is 1.039.

Figure 6 shows a comparison between pillar strengths
using power law estimators derived from the Australian, South

African, and combined Australian-South African databases.  The
closeness of the predictions is remarkable considering the geo-
graphical separation of the Australian and South African
coalfields.



70

Figure 6.CCComparison between power law strength formulas derived for the Australian, South African, and combined databases. 
A, h '' 2 m; B, h '' 4 m.

CONCLUSIONS

The statistical analysis of the Australian database indicates
that the method proposed for calculating the effective width of
parallelepiped pillars produced sensible outcomes.  However,
it must be remembered that, although of sufficient size to be
statistically significant, the parallelepiped database is small.
The method should therefore be used with caution.

In order to enhance confidence in the pillar design pro-
cedure, including the use of the effective pillar width method,
additional research was undertaken.  It was noted that the for-
mula derived from the initial Australian database closely re-
sembled the original Salamon-Munro expression.  This some-
what surprising resemblance prompted further research and
enlargement of the database.  The larger database yielded pillar
strengths that again were similar to those obtained from the
initial UNSW research and by Salamon and Munro.  The com-
bination of the Australian and South African databases re-
inforced the original impression, namely, that the underlying
pillar strengths in these countries resembled each other closely.

The outcome of the investigation lends support to the view
expressed by Mark and Barton [1996].  They suggested that
strength values obtained in the laboratory cannot be utilized in

a meaningful way in pillar design and that the variation in the
strength of pillars of the same size can be disregarded in many
instances.  Mark and Barton [1996] emphasize that they do not
claim that the in situ strength of all U.S. coal is the same.  Their
study merely showed that a uniform strength is a better approxi-
mation than one based on laboratory testing.  Although the
UNSW research conclusions are encouraging, complacency is
not justified.  The formulas are based on competent roof and
floor conditions.  Significantly different pillar strengths may be
associated with abnormal strata behavior mechanisms.  Because
pillars with w/h ratios greater than 10 have not been tested to
destruction, it must also be recognized that neither linear nor
power law formulas have been validated at w/h ratios greater
than about 8.

It cannot be overemphasized that, because the design for-
mulas have been developed on a probabilistic basis, they need to
be reviewed periodically as the database expands and the un-
derstanding of pillar mechanics advances.  A fundamental rule
of empirical research is that the results should be used within the
range of data used in their derivation.  Extrapolation with
empirical formulas is always fraught with danger.
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